Part Number Hot Search : 
LF353 STPM01 18331350 SC417 DX0907 HSR1100 P4NB80 AON74
Product Description
Full Text Search
 

To Download IR2136STR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  typical connection 3-phase bridge driver features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage - dv/dt immune ? gate drive supply range from 10 to 20v (ir2136/ ir21368), 11.5 to 20v (ir21362) or 12 to 20v (ir21363/ir21365/ ir21366/ir21367) ? undervoltage lockout for all channels ? over-current shutdown turns off all six drivers ? independent 3 half-bridge drivers ? matched propagation delay for all channels ? cross-conduction prevention logic ? lowside outputs out of phase with inputs. high side outputs out of phase (ir2136/ir21363/ir21365/ ir21366/ir21367/ir21368) or in phase (ir21362) with inputs. ? 3.3v logic compatible ? lower di/dt gate driver for better noise immunity ? externally programmable delay for automatic fault clear description data sheet no. pd60166 rev.r ir2136/ir21362/ir21363/ir21365/ ir21366/ir21367/ir21368 ( j & s ) www.irf.com 1 (refer to lead assign- ments for correct pin con- figuration). this/these diagram(s) show electri- cal connections only. please refer to our appli- cation notes and designtips for proper cir- cuit board layout. packages 28-lead pdip 28-lead soic 44-lead plcc w/o 12 leads the ir2136/ir21362/ ir21363 /ir21365/ir21366/ir21367/ir21368 (j&s) are high votage, high speed power m osfet and igbt drivers with three independent high and low side referenced output channels for 3-phase applications. proprietary hvic technology enables ruggedized monolithic construction. logic inputs are compatible with cmos or lsttl outputs, down to 3.3v logic. a current trip function which terminates all six outputs can be derived from an external current sense resistor. an enable function is available to terminate all six outputs simultaneously. an open-drain fault signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. overcurrent fault conditions are cleared automatically after a delay programmed externally via an rc network connected to the rcin input. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. propagation delays are matched to simplify use in high frequency applications. the floating channel can be used to drive n-channel power mosfets or igbts in the high side configuration which operates up to 600 volts. vcc hin1,2,3 / hin1,2,3 lin1,2,3 fault itrip rcin en vss com lo1,2,3 vs1,2,3 ho1,2,3 vb1,2,3 ir2136(2)(3)(5)(6)(7)(8) to load vcc hin1,2,3 / hin1,2,3 lin1,2,3 fault en gnd up to 600v part input logic ton (typ.) toff (typ.) v ih (typ.) v il (typ.) vitrip+ uv cc/bs+ uv cc/bs- ir2136 hin, lin 400ns 380ns 2.7v 1.7v 0.46v 8.9v 8.2v ir21362 hin/lin 400ns 380ns 2.7v 1.7v 0.46v 10.4v 9.4v ir21363 hin, lin 400ns 380ns 2.7v 1.7v 0.46v 11.2v 11.0v ir21365 hin, lin 400ns 380ns 2.7v 1.7v 4.3v 11.2v 11.0v ir21366 hin, lin 250ns 180ns 2.0v 1.3v 0.46v 11.2v 11.0v ir21367 hin, lin 250ns 180ns 2.0v 1.3v 4.3v 11.2v 11.0v ir21368 hin,lin 400ns 380ns 2.0v 1.3v 4.3v 8.9v 8.2v feature comparison: ir2136/ir21362/ir21363/ ir21365/ir21366/ir21367/ir21368
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 2 www.irf.com recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recom- mended conditions. all voltage parameters are absolute referenced to com. the v s offset rating is tested with all supplies biased at 15v differential. v b1,2,3 high side floating supply voltage ir2136(8) v s1,2,3 + 10 v s1,2,3 + 20 ir21362 v s1,2,3 + 11.5 v s1,2,3 + 20 ir2136(3) (5)(6)(7) v s1,2,3 + 12 v s1,2,3 + 20 v s1,2,3 high side floating supply offset voltage note 1 600 v ho1,2,3 high side output voltage v s1,2,3 v b1,2,3 v lo1,2,3 low side output voltage 0 v cc v cc low side and logic fixed supply voltage ir2136(8) 10 20 ir21362 11.5 20 ir2136(3) (5)(6)(7) 12 20 v ss logic ground -5 5 v flt fault output voltage v ss v cc v rcin rcin input voltage v ss v cc symbol definition min. max. units v note 1: logic operational for v s of com -5v to com +600v. logic state held for v s of com -5v to com -v bs . (please refer to the design tip dt97-3 for more details). note 2: all input pins (hin-, hin, lin-, en and itrip) are internally clamped with a 5.2v zener diode. symbol definition min. max. units v s high side offset voltage v b1,2,3 - 25 v b1,2,3 + 0.3 v bs high side floating supply voltage -0.3 625 v ho high side floating output voltage v s1,2,3 - 0.3 v b1,2,3 + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v ss logic ground v cc - 25 v cc + 0.3 v lo1,2,3 low side output voltage -0.3 v cc + 0.3 v in input voltage lin,hin,itrip, en, rcin v ss - 0.3 lower of (v ss + 15) or v cc + 0.3) v flt fault output voltage v ss - 0.3 v cc + 0.3 dv/dt allowable offset voltage slew rate ? 5 0 v/ns p d package power dissipation @ t a +25 c (28 lead pdip) ? 1.5 (28 lead soic) ? 1.6 ( 44leadplcc) ? 2.0 rth ja thermal resistance, junction to ambient (28 l ead pdip) ? 83 (28 lead soic) ? 78 (44 lead plcc) ? 63 t j junction temperature ? 150 t s storage temperature -55 150 t l lead temperature (soldering, 10 seconds) ? 300 v c/w absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage parameters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. w c
www.irf.com 3 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) note 2: all input pins (hin-, hin, lin-, en and itrip) are internally clamped with a 5.2v zener diode. recommended operating conditions cont. the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recom- mended conditions. all voltage parameters are absolute referenced to com. the v s offset rating is tested with all supplies biased at 15v differential. symbol definition min. max. units v static electrical characteristics v bias (v cc , v bs 1,2,3) = 15v unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six channels (h s 1,2,3 and l s 1,2,3). the v o and i o parameters are referenced to com and v s 1,2,3 and are applicable to the respective output leads: h o1,2,3 and l o1,2,3. symbol definition min. typ. max. units test conditions v ih logic ?0? input voltage lin1,2,3, hin1,2,3 ir2136(3)(5) 3.0 ? ? logic ?1? input voltage hin1,2,3 ir21362 logic ?0? input voltage lin1,2,3, hin1,2,3 ir21366(7)(8) 2.5 ? ? v il logic ?1? input voltage lin1,2,3, hin1,2,3 ir2136(3)(5) ? ? 0.8 logic ?0? input voltage hin1,2,3 ir21362 logic ?0? input voltage lin1,2,3, hin1,2,3 ir21366(7)(8) ? ? 0.8 v en,th+ en positive going threshold ? ? 3 v en,th- en negative going threshold 0.8 ? ? v it,th+ itrip positive going threshold ir2136(2)(3)(6) 0.37 0.46 0.55 ir21365(7)(8) 3.85 4.30 4.75 v it,hys itrip input hysteresis ir2136(2)(3)(6) ? 0.07 ? ir21365(7)(8) ? .15 ? v rcin,th+ rcin positive going threshold ? 8 ? v rcin,hys rcin input hysteresis ? 3 ? v oh high level output voltage, v bias - v o ? 0.9 1.4 i o = 20 ma v ol low level output voltage, v o ? 0.4 0.6 i o = 20 ma v ccuv+ v cc and v bs supply undervoltage ir2136(8) 8.0 8.9 9.8 v bsuv+ positive going threshold ir21362 9.6 10.4 11.2 ir21363 (5)(6)(7) 10.6 11.1 11.6 v v itrip itrip input voltage v ss v ss +5 v in logic input voltage lin , hin (ir2136,ir21363(5)(6)(7)(8)), hin(ir21362), en v ss v ss +5 t a ambient temperature -40 125 o c
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 4 www.irf.com static electrical characteristics cont. v bias (v cc , v bs 1,2,3) = 15v unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six channels (h s 1,2,3 and l s 1,2,3). the v o and i o parameters are referenced to com and v s 1,2,3 and are applicable to the respective output leads: h o1,2,3 and l o1,2,3. symbol definition min. typ. max. units test conditions v ccuv- v cc and v bs supply undervoltage ir2136(8) 7.4 8.2 9.0 v bsuv- negative going threshold ir21362 8.6 9.4 10.2 ir21363 (5)(6)(7) 10.4 10.9 11.4 v ccuvh v cc and v bs supply undervoltage ir2136 0.3 0.7 ? v bsuvh lockout hysteresis ir21362 0.5 1.0 ? ir21363(5) ? 0.2 ? i lk offset supply leakage current ? ? 50 v b1,2,3 =v s1,2,3 =600v i qbs quiescent v bs supply current ? 70 120 i qcc quiescent v cc supply current ? 1.6 2.3 ma v in, clamp input clamp voltage (hin, lin, itrip and en) 4.9 5.2 5.5 v i in =100 a i lin+ input bias current (lout = hi) ir2136(2)(3)(5) ? 200 300 v lin = 5v ir21366(7)(8) ? 30 100 i lin- input bias current (lout = lo) ir2136(2)(3)(5) ? 100 220 v lin = 0v ir21366(7)(8) ?01 i hin+ input bias current (hout = hi) ir2136(3)(5) ? 200 300 v hin = 5v ir21362 ? 30 100 ir21366(7)(8) ? 30 100 i hin- input bias current (hout = lo) ir2136(3)(5) ? 100 220 v hin = 0v ir21362(6)(7)(8) ?01 i itrip+ ?high? itrip input bias current ? 30 100 v itrip = 5v i itrip- ?low? itrip input bias current ? 0 1 v itrip = 0v i en+ ?high? enable input bias current ? 30 100 v enable = 5v i en- ?low? enable input bias current ? 0 1 v enable = 0v i rcin rcin input bias current ? 0 1 v rcin = 0v or 15v i o+ output high short circuit pulsed current 120 200 ? v o =0v, pw 10 s i o- output low short circuit pulsed current 250 350 ? v o =15v, pw 10 s r on,rcin rcin low on resistance ? 50 100 r on,flt fault low on resistance ? 50 100 v in = 0v or 5v a ? a ma v
www.irf.com 5 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) vcc vbs itrip enable fault lo1,2,3 ho1,2,3 v itrip 5v 0 (note 2) 0 0 15v 15v 0v 0v high imp 0 0 note: a shoot-through prevention logic prevents lo1,2,3 and ho1,2,3 for each channel from turning on simultaneously. note 1: uvcc is not latched, when vcc>uvcc, fault returns to high impedance. note 2: when itrip 400nsec
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 6 www.irf.com functional block diagram ir2136/21363/21365 com vcc lo1 lo2 lo3 delay vss/com level shifter delay vss/com level shifter delay vss/com level shifter lin1 hin1 lin2 hin2 lin3 hin3 deadtime & shoot-through prevention deadtime & shoot-through prevention deadtime & shoot-through prevention vs1 ho1 vb1 hv level shifter vss/com level shifter latch uv detect set reset driver vs2 ho2 vb2 hv level shifter vss/com level shifter latch uv detect set reset driver vs3 ho3 vb3 hv level shifter vss/com level shifter latch uv detect set reset driver driver driver driver input noise filter input noise filter input noise filter input noise filter input noise filter input noise filter uv detect en itrip + - 0.5v rcin s r q fault input noise filter vss input noise filter set dominant latch
www.irf.com 7 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) ir21362 com vcc lo1 lo2 lo3 delay vss/com level shifter delay vss/com level shifter delay vss/com level shifter lin1 hin1 lin2 hin2 lin3 hin3 deadtime & shoot-through prevention deadtime & shoot-through prevention deadtime & shoot-through prevention vs1 ho1 vb1 hv level shifter vss/com level shifter latch uv detect set reset driver vs2 ho2 vb2 hv level shifter vss/com level shifter latch uv detect set reset driver vs3 ho3 vb3 hv level shifter vss/com level shifter latch uv detect set reset driver driver driver driver input noise filter input noise filter input noise filter input noise filter input noise filter input noise filter uv detect en itrip + - 0.5v rcin s r q fault input noise filter vss input noise filter set dominant latch functional block diagram
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 8 www.irf.com functional black diagram ir21366/ir21367/ir21368 com vcc lo1 lo2 lo3 delay vss/com level shifter delay vss/com level shifter delay vss/com level shifter lin1 hin1 lin2 hin2 lin3 hin3 deadtime & shoot-through prevention deadtime & shoot-through prevention deadtime & shoot-through prevention vs1 ho1 vb1 hv level shifter vss/com level shifter latch uv detect set reset driver vs2 ho2 vb2 hv level shifter vss/com level shifter latch uv detect set reset driver vs3 ho3 vb3 hv level shifter vss/com level shifter latch uv detect set reset driver driver driver driver uv detect en itrip + - rcin s r q fault input noise filter vss input noise filter set dominant latch
www.irf.com 9 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) lead definitions symbol description v cc low side and logic fixed supply vss logic ground hin1,2,3 l ogic inputs for high side gate driver outputs (ho1,2,3), out of phase (ir2136/ir21363(5)(6)(7)(8) hin1,2,3 logic inputs for high side gate driver outputs (ho1,2,3), in phase (ir21362) lin1,2,3 logic inputs for low side gate driver outputs (lo1,2,3), out of phase fault indicates over-current (itrip) or low-side undervoltage lockout has occured. negative logic, open-drain output en logic input to enable i/o functionality. positive logic, i.e. i/o logic functions when enable is high. no effect on fault and not latched itrip analog input for overcurrent shutdown. when active, itrip shuts down outputs and activates fault and rcin low. when itrip becomes inactive, fault stays active low for an externally set time t fltclr , then automatically becomes inactive (open-drain high impedance). rcin external rc network input used to define fault clear delay, t fltclr , approximately equal to r*c. when rcin>8v, the fault pin goes back into open-drain high-impedance com low side gate driver return v b 1,2,3 high side floating supply ho1,2,3 high side gate driver outputs v s1,2,3 high voltage floating supply returns lo1,2,3 low side gate driver output note 2: all input pins (hin-, hin, lin-, en and itrip) are internally clamped with a 5.2v zener diode.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 10 www.irf.com 28 lead pdip 44 lead plcc w/o 12 leads 28 lead soic (wid e body) ir2136/ir21363(5)(6)(7)(8) ir2136/ir21363(5)(6)(7)(8) (j) ir2136/ir21363(5)(6)(7)(8) (s) 1 vcc 2 hin1 3 hin2 4 hin3 5 lin1 6 lin2 7 lin3 8 fault 9 itrip 10 en 11 rcin 12 vss 13 com 14 lo3 28 vb1 27 ho1 26 vs1 25 24 vb2 23 ho2 22 vs2 21 20 vb3 19 ho3 18 vs3 17 16 lo1 15 lo2 ir2136 fault 8 9 10 11 lin1 12 lin2 13 lin3 14 15 itrip 16 en 17 7 vss lo1 18 lo3 vs3 ho3 vb3 29 41 vs1 lo2 com 30 31 vs2 ho2 vb2 35 36 37 19 20 21 22 23 24 25 ho1 vb1 vcc hin1 hin2 hin3 42 43 3 4 5 6 ir2136 44 lead plcc w/o 12 leads rcin 1 vcc 2 hin1 3 hin2 4 hin3 5 lin1 6 lin2 7 lin3 8 fault 9 itrip 10 en 11 rcin 12 vss 13 com 14 lo3 28 vb1 27 ho1 26 vs1 25 24 vb2 23 ho2 22 vs2 21 20 vb3 19 ho3 18 vs3 17 16 lo1 15 lo2 ir2136 lead assignments 28 lead pdip 44 lead plcc w/o 12 leads 28 lead soic (w ide body) ir21362 ir21362j ir21362s 1 vcc 2 hin1 3 hin2 4 hin3 5 lin1 6 lin2 7 lin3 8 fault 9 itrip 10 en 11 rcin 12 vss 13 com 14 lo3 28 vb1 27 ho1 26 vs1 25 24 vb2 23 ho2 22 vs2 21 20 vb3 19 ho3 18 vs3 17 16 lo1 15 lo2 1 vcc 2 hin1 3 hin2 4 hin3 5 lin1 6 lin2 7 lin3 8 fault 9 itrip 10 en 11 rcin 12 vss 13 com 14 lo3 28 vb1 27 ho1 26 vs1 25 24 vb2 23 ho2 22 vs2 21 20 vb3 19 ho3 18 vs3 17 16 lo1 15 lo2 fault 8 9 10 11 lin1 12 lin2 13 lin3 14 15 itrip 16 en 17 7 vss lo1 18 lo3 vs3 ho3 vb3 29 41 vs1 lo2 com 30 31 vs2 ho2 vb2 35 36 37 19 20 21 22 23 24 25 ho1 vb1 vcc hin1 hin2 hin3 42 43 3 4 5 6 rcin
www.irf.com 11 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) figure 3. output enable timing waveform en ho1,2,3 lo1,2,3 50% 90% ten figure 1. input/output timing diagram hin1,2,3 lin1,2,3 en itrip fault rcin ho1,2,3 lo1,2,3 hin1,2,3 figure 2. switching time waveforms lin1,2,3 hin1,2,3 ho1,2,3 lo1,2,3 50% 50% 90% 10% 10% 90% ton tr tf toff lin1,2,3 hin1,2,3 50% 50% pw in pw out
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 12 www.irf.com figure 4. internal deadtime timing waveforms lin1,2,3 hin1,2,3 ho1,2,3 lo1,2,3 50% 50% lin1,2,3 hin1,2,3 50% 50% 50% 50% 50% 50% dt dt figure 5. itrip/rcin timing waveforms rcin any output tflt itrip fault 50% 50% titrip 90% 50% 50% tfltclr vrcin,th+ u t in,fil t in,fil on on on off off off high low hin/lin ho/lo figure 5.5 input filter function
www.irf.com 13 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 200 400 600 800 1000 10 12 14 16 18 20 supply voltage (v) turn-on propagation delay (ns) figure 6b. turn-on propagation delay vs. su pp l y volta g e mi n. typ. max. 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on propagation delay (ns) typ. max. figure 6a. turn-on propagation delay vs. temperature mi n. 0 200 400 600 800 1000 3 3.5 4 4.5 5 input voltage (v) turn-on propagation delay (ns ) figure 6c. turn-on propagation delay vs. in p ut volta g e typ. max. mi n. 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off propagation delay (ns) typ. max. figure 7a. turn-off propagation delay vs. temperature mi n.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 14 www.irf.com 0 200 400 600 800 1000 3 3.5 4 4.5 5 input voltage (v) turn-off propagation delay (ns ) figure 7c. turn-off propagation delay vs. in p ut volta g e typ. max. mi n. 0 100 200 300 400 -50-250255075100125 temperature ( o c) turn-on rise time (ns ) typ. max. figure 8a. turn-on rise time vs. temperature 0 200 400 600 800 1000 10 12 14 16 18 20 supply voltage (v) turn-off propagation delay (ns) figure 7b. turn-off propagation delay vs. supply voltage mi n. typ. max. 0 100 200 300 400 10 12 14 16 18 20 supply voltage (v) turn-on rise time (ns ) figure 8b. turn-on rise time vs. supply voltage typ. max.
www.irf.com 15 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 50 100 150 200 -50-25 0 255075100125 temperature ( o c) turn-off fall time (ns) typ. max. figure 9a. turn-off fall time vs. temperature 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) en to output shutdown time (ns) typ. max. figure 10a. en to output shutdown time vs. temperature mi n. 0 50 100 150 200 10 12 14 16 18 20 supply voltage (v) turn-off fall time (ns ) figure 9b. turn-off fall time vs. supply voltage typ. max. 0 200 400 600 800 1000 10 12 14 16 18 20 supply voltage (v) en to output shutdown time (ns) figure 10b. en to output shutdown time vs. su pp l y volta g e typ. max. mi n.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 16 www.irf.com 0 300 600 900 1200 1500 -50 -25 0 25 50 75 100 125 temperature ( o c) itrip to output shutdown time (ns) typ. max. figure 11a. itrip to output shutdown time vs. temperature mi n. 0 200 400 600 800 1000 3 3.5 4 4.5 5 en voltage (v) en to output shutdown time (ns) figure 10c. en to output shutdown time vs. en volta g e typ. max. mi n. 0 300 600 900 1200 1500 10 12 14 16 18 20 supply voltage (v) itrip to output shutdown time (ns ) figure 11b. itrip to output shutdown time vs. supply voltage typ. max. mi n. 0 200 400 600 800 1000 1200 -50-250 255075100125 temperature ( o c) itrip to fault indication time (ns) typ. max. figure 12a. itrip to fault indication time vs. temperature mi n.
www.irf.com 17 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 200 400 600 800 1000 1200 10 12 14 16 18 20 supply voltage (v) fault indication time (ns) figure 12b. itrip to fault indication time vs. su pp l y volta g e typ. max. mi n. 0.5 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temperature ( o c) fault clear time (ms) typ. max. fig13a. fault clear time vs. temperature mi n. 0.5 1.0 1.5 2.0 2.5 3.0 10 12 14 16 18 20 supply voltage (v) fault clear time (ms) figure 13b. fault clear time vs. supply voltage max. mi n. typ. 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) dead time (ns) typ. max. figure 14a. dead time vs. temperature mi n.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 18 www.irf.com 0 100 200 300 400 500 600 10 12 14 16 18 20 supply voltage (v) dead time (ns) figure 14b. dead time time vs. supply voltage typ. max. mi n. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input threshold (v) figure 15a. logic "0" input threshold vs. temperature max. 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "0" input threshold (v) figure 15b. logic "0" input threshold vs. su pp l y volta g e max. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input threshold (v) mi n. figure 16a. logic "1" input threshold vs. temperature
www.irf.com 19 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "1" input threshold (v) figure 16b. logic "1" input threshold vs. su pp l y volta g e mi n. 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) itrip positive going threshold (m v typ. max. figure 17a. itrip positive going threshold vs. temperature (ir2136/21362/21363/ir21366 only) mi n. 200 300 400 500 600 700 800 10 12 14 16 18 2 0 supply voltage (v) itrip positive going threshold (m v figure 17b. itrip positive going threshold vs. supply voltage (ir2136/21362/21363/ir21366 only) typ. m ax. mi n. 3.0 3.5 4.0 4.5 5.0 5.5 -50 -25 0 25 50 75 100 125 temperature ( o c) itrip positive going threshold ( v typ. m ax. figure 17c. itrip positive going threshold vs. temperature (ir21365/ir21367/ir21368 only) mi n.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 20 www.irf.com 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output voltage (v) typ. max. figure 18a. high level output vs. temperature 0.0 0.5 1.0 1.5 2.0 2.5 3.0 10 12 14 16 18 20 supply voltage (v) high level output voltage (v) figure 18b. high level output vs. supply voltage typ. max. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output voltage (v) typ. max. figure 19a. low level output vs. temperature 3.0 3.5 4.0 4.5 5.0 5.5 12 14 16 18 20 supply voltage (v) itrip positive going threshold ( v figure 17d. itrip positive going threshold vs. supply voltage (ir21 365/ir21367/ir21368 only) typ. max. mi n.
www.irf.com 21 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 10 12 14 16 18 20 supply voltage (v) low level output voltage (v) figure 19b. low level output vs. supply voltage typ. max. 8 9 10 11 12 13 -50-250 255075100125 temperature ( o c) v cc or v bs undervoltage lockout (+) (v) typ. max. figure 22. v cc or v bs undervoltage (+) vs. temperature (ir21362 only) mi n. 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc or v bs undervoltage lockout (+) ( v typ. max . figure 20. v cc or v bs undervoltage (+) vs. tem perature (ir2136/ir21368 only) mi n. 6 7 8 9 10 11 -50-25 0 25 50 75100125 temperature ( o c) v cc or v bs undervoltage lockout (-) (v) typ. max. figure 21. v cc or v bs undervoltage (-) vs. temperature (ir2136/ir21368 only) mi n.
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 22 www.irf.com 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc or v bs undervoltage lockout (-) (v ) typ. max. figure 23. v cc or v bs undervoltage (-) vs. temperature ( ir21362 onl y) mi n. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) offset supply leakage current ( a) max. figure 26a. offset supply leakage current vs. temperature 10 11 12 13 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc or v bs undervoltage lockout (+) (v) typ. m ax. fig ur e 24. v cc or v bs undervoltage (+) vs. tem pe rature (ir21363/21365/ir21366/ir21367 only) mi n. 9 10 11 12 13 -50 -25 0 25 50 75 100 12 5 temperature ( o c) v cc or v bs undervoltage lockout (-) (v) figure 25. v cc or v bs undervoltage (-) vs. tem perature (ir21363/21365/ir21366/ir21367 only) mi n. typ . max.
www.irf.com 23 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 100 200 300 400 500 100 200 300 400 500 600 v b boost voltage (v) offset supply leakage current ( a) figure 26b. offset supply leakage current vs. v b boost volta g e max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs supply current ( a) typ. max. figure 27a. v bs supply current vs. temperature 0 50 100 150 200 250 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current ( a) figure 27b. v bs supply current vs. v bs floating supply voltage typ. max. 0 1 2 3 4 5 -50-25 0 255075100125 temperature ( o c) v cc supply current (ma) typ. max. figure 28a. v cc supply current vs. temperature
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 24 www.irf.com 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) v cc supply current (ma) figure 28b. v cc supply current vs. v cc supply voltage typ. max. 0 200 400 600 800 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input current ( a) typ. max. figure 29a. logic "1" input current vs. temperature (ir2136/21363/21365 and ir21362 low side only) 0 50 100 150 200 250 300 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input current ( a) typ. max. figure 29c. logic "1" input current vs. temperature (ir21362 high side only) 0 200 400 600 800 10 12 14 16 18 20 supply voltage (v) logic "1" input current ( a) typ. max. figure 29b. logic "1" input current vs. supply voltage (ir2136/21363/21365 and ir21362 low side only)
www.irf.com 25 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 50 100 150 200 250 300 10 12 14 16 18 20 supply voltage (v) logic "1" input current ( a) figure 29d. logic "1" input current vs. supply voltage (ir21362 high side only) typ. max. 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input current ( a) typ. max. figure 30a. logic "0" input current vs. temperature (ir2136/21363/21365 and ir21362 low side only) 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input current ( a) typ. max. figure 30c. logic "0" input current vs. temperature (ir21362 high side only) 0 100 200 300 400 500 600 10 12 14 16 18 20 supply voltage (v) logic "0" input current ( a) figure 30b. logic "0" input current vs. supply voltage (ir2136/21363/21365 and ir21362 low side typ. max. only)
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 26 www.irf.com 0 1 2 3 4 10 12 14 16 18 20 supply voltage (v) logic "0" input current ( a) figure 30d. logic "0" input current vs. su pp l y volta g e ( ir21362 hi g h side onl y) typ. max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) "high" itrip current ( a) typ. max. figure 31a. "high" itrip current vs. temperature 0 50 100 150 200 250 10 12 14 16 18 20 supply voltage (v) "high" itrip current ( a) figure 31b. "high" itrip current vs. supply voltage typ. max. 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) "low" itrip current ( a) max. figure 32a. "low" itrip current vs. temperature typ.
www.irf.com 27 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 1 2 3 4 10 12 14 16 18 20 supply voltage (v) "low" itrip current ( a) figure 32b. "low" itrip current vs. supply voltage typ. max. 0 50 100 150 200 -50 -25 0 25 50 75 100 125 temperature ( o c) "high" ien current ( a) max. figure 33a. "high" ien current vs. temperature typ. 0 50 100 150 200 250 10 12 14 16 18 20 supply voltage (v) "high" ien current ( a) figure 33b. "high" ien current vs. supply voltage typ. max. 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) "low" ien current ( a) typ. max. figure 34a. "low" ien current vs. temperature
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 28 www.irf.com 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) rcin input bias current ( a) max. figure 35a. rcin input bias current vs. temperature typ. 0 1 2 3 4 10 12 14 16 18 20 supply voltage (v) rcin input bias current ( a) figure 35b. rcin input bias current vs. su pp l y volta g e typ. max. 0 100 200 300 400 -50 -25 0 25 50 75 100 125 temperature ( o c) output source current (ma) typ. figure 36a. output source current vs. temperature mi n. figure 34b. ?l ow? ien current vs. supply voltage 0 1 2 3 4 10 12 14 16 18 20 supply voltage (v) "low" ien current ( a) figure 34b. "low" ien current vs. supply voltage typ. m ax.
www.irf.com 29 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 0 100 200 300 400 500 10 12 14 16 18 20 supply voltage (v) output source current (ma) figure 36b. output source current vs. su pp l y volta g e typ. mi n. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (ma) typ. figure 37a. output sink current vs. temperature mi n. 0 100 200 300 400 500 600 10 12 14 16 18 20 supply voltage (v) output sink current (ma) figure 37b. output sink current vs. su pp l y volta g e typ. mi n. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) rcin low on-resistance ( ? ) typ. max. figure 38a. rcin low on-resistance vs. temperature
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 30 www.irf.com 0 50 100 150 200 250 10 12 14 16 18 20 supply voltage (v) rcin low on-resistance ( ) figure 38b. rcin low on-resistance vs. su pp l y volta g e typ. max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) fault low on-resistance ( ? ) typ. max. figure 39a. fault low on-resistance vs. temperature 0 50 100 150 200 250 10 12 14 16 18 20 supply voltage (v) fault low on-resistance ( ) figure 39b. fault low on-resistance vs. su pp l y volta g e typ. max. -15 -12 -9 -6 -3 0 10 12 14 16 18 20 supply voltage (v) v s offset supply voltage (v) figure 40. maximum v s negative offset vs. v bs su pp l y volta g e typ.
www.irf.com 31 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100v 200v 300v 0v 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v 20 40 60 80 100 120 0.1110100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v figure 42. ir2136/ir21362(3)(5)(6)(7)(8) vs. frequency (irg4bc30w), r gate =15 ? ? ? ? ? , vcc=15v figure 41. ir2136/ir21362(3)(5)(6)(7)(8) vs. frequency (irg4bc2 0w), r gat e=33 ? ? ? ? ? , vcc=15v figure 44. ir2136/ir21362(3)(5)(6)(7)(8) vs. frequency (irg4pc5 0w), r gate =5 ? ? ? ? ? , vcc=15v figure 43. ir2136/ir21362(3)(5)(6)(7)(8) vs. frequency (irg4bc4 0w), r gat e=10 ? ? ? ? ? , vcc=15v
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 32 www.irf.com 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100v 200v 300v 0v 20 40 60 80 100 120 0.1110100 frequency (khz) junction temperature ( o c) 100v 200v 300v 0v 20 40 60 80 100 120 0.1110100 frequency (khz) junction temperature ( o c) 100v 200v 300v 0v 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100v 200v 300v 0v figure 46. ir2136/ir21362(3)(5)(6)(7)(8) (j) vs. frequency (irg4bc30w), r gate =15 ? ? ? ? ? , vcc=15v figure 45. ir2136/ir21362(3)(5)(6)(7)(8) (j) vs. frequency (irg4bc2 0w), r gat e=33 ? ? ? ? ? , vcc=15v figure 48. ir2136/ir21362(3)(5)(6)(7)(8) (j) vs. frequency (irg4pc5 0w), r gate =5 ? ? ? ? ? , vcc=15v figure 47. ir2136/ir21362(3)(5)(6)(7)(8) (j) vs. frequency (irg4bc4 0w), r gat e=10 ? ? ? ? ? , vcc=15v
www.irf.com 33 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v 20 40 60 80 100 120 0.1 1 10 100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v 20 40 60 80 100 120 0.1110100 frequency (khz) junction temperature ( o c) 100 v 200v 300v 0v figure 50. ir2136/ir21362(3)(5)(6)(7)(8) (s) vs. frequency (irg4bc30w), r gate =15 ? ? ? ? ? , vcc=15v figure 49. ir2136/ir21362(3)(5)(6)(7)(8) (s) vs. frequency (irg4bc2 0w), r gat e=33 ? ? ? ? ? , vcc=15v figure 52. ir2136/ir21362(3)(5)(6)(7)(8) (s) vs. frequency (irg4pc5 0w), r gate =5 ? ? ? ? ? , vcc=15v figure 51. ir2136/ir21362(3)(5)(6)(7)(8) (s) vs. frequency (irg4bc4 0w), r gat e=10 ? ? ? ? ? , vcc=15v
ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 34 www.irf.com 28-lead pdip (wide body) 01-6011 01-3024 02 (ms-011ab) case outlines 01-6013 01-3040 02 (ms-013ae) 28-lead soic (wide body)
www.irf.com 35 ir2136(2)(3)(5)(6)(7)(8) ( j & s ) 01-6009 00 01-3004 02(mod. ) (ms-018ac) 44-lead plcc w/o 12 leads notes world headquarters: 233 kansas street, el segundo, california 90245 tel: (310) 252-7105 http://www.irf.com/ data and specifications subject to change without notice. 1/21/2004


▲Up To Search▲   

 
Price & Availability of IR2136STR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X